Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 162: 114665, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37062216

RESUMO

Encapsulated cell-based therapies for solid tumors have shown promising results in pre-clinical settings. However, the inability to culture encapsulated therapeutic cells prior to their transplantation has limited their translation into clinical settings. In this study, we created a wide variety of engineered therapeutic cells (ThC) loaded in micropore-forming gelatin methacryloyl (GelMA) hydrogel (CellDex) capsules that can be cultured in vitro prior to their transplantation in surgically debulked solid tumors. We show that both allogeneic and autologous engineered cells, such as stem cells (SCs), macrophages, NK cells, and T cells, proliferate within CellDex capsules and migrate out of the gel in vitro and in vivo. Furthermore, tumor cell specific therapeutic proteins and oncolytic viruses released from CellDex capsules retain and prolong their anti-tumor effects. In vivo, ThCs in pre-manufactured Celldex capsules persist long-term and track tumor cells. Moreover, chimeric antigen receptor (CAR) T cell bearing CellDex (T-CellDex) and human SC releasing therapeutic proteins (hSC-CellDex) capsules show therapeutic efficacy in metastatic and primary brain tumor resection models that mimic standard of care of tumor resection in patients. Overall, this unique approach of pre-manufactured micropore-forming CellDex capsules offers an effective off-the-shelf clinically viable strategy to treat solid tumors locally.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Neoplasias/patologia , Receptores de Antígenos Quiméricos/metabolismo , Células Matadoras Naturais , Linfócitos T , Terapia Baseada em Transplante de Células e Tecidos , Imunoterapia Adotiva/métodos
2.
Vet Ital ; 57(1): 49-59, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34313098

RESUMO

Bovine herpesvirus type 4 (BoHV­4) is a common virus in the world that is detected in clinically ill or in apparently healthy cattle. This study provides a molecular characterization of BoHV­4 strains from 24 cattle some showing respiratory and/or reproductive problems and some without any apparent clinical sign. This study also reported the growth properties of five BoHV­4 field isolates. The 24 sampled cattle came from 13 different herds in 10 provinces collected between 2007 and 2018. Phylogenetic analysis using partially amplified nucleotide sequences of ORF8 genes coding glycoprotein B (n = 24) and ORF3 genes coding thymidine kinase (n = 9), demonstrated genetic variability among the BoHV­4 strains analysed. The partial gB gene sequences clustered in three different genotypes (genotype I, II and III) were located within the genotype I cluster, such as Movar strain. The analysis of the five BoHV­4 strains isolated from vaginal swabs (n = 2), nasal swab (n = 1), and brain samples (n = 2) revealed no significant differences in their growth properties in MDBK cell culture.


Assuntos
Doenças dos Bovinos/epidemiologia , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 4/isolamento & purificação , Criação de Animais Domésticos , Animais , Bovinos , Doenças dos Bovinos/virologia , Infecções por Herpesviridae/epidemiologia , Herpesvirus Bovino 4/genética , Filogenia , Turquia/epidemiologia
3.
Virus Genes ; 57(1): 31-39, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33104955

RESUMO

Oncolytic viruses have been extensively used in cancer treatment due to their tropism, selective replication only in tumor cells, and possible synergic interaction with other therapeutics. Different researchers have demonstrated that bovine herpesvirus 4 (BoHV-4), a member of the gammaherpesviridae family, has oncolytic potential in some human-origin cancer cell lines like glioma through the selective replication strategy. Using four apoptosis detection methods, namely MTT, LDH, TUNEL, and Annexin V assays, we evaluated the apoptotic effect of BoHV-4 Movar33/63 reference strain along with a recombinant BoHV-4 expressing EGFP in U87 MG cells (human glioblastoma cell line), MDA MB-231 (human breast cancer cell line), and MCF10a (non-tumorigenic human mammary epithelial cell line). Our findings indicate that this virus can replicate and induce apoptosis in these cell lines and hinder in vitro proliferation in a dose-dependent manner. In conclusion, BoHV-4 has in vitro potential as a novel oncolytic virus in human cancer therapy. However, its replication potential in the MCF10a cells as a non-tumorigenic human mammary epithelial cell line is a concern in using this virus in cancer therapy, at least against human mammary tumors. Further studies must therefore be conducted to examine the specific apoptotic pathways induced by this virus to move on to further experiments.


Assuntos
Neoplasias da Mama/terapia , Glioblastoma/terapia , Herpesvirus Bovino 4/fisiologia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Replicação Viral , Apoptose , Linhagem Celular Tumoral , Humanos
4.
Viruses ; 12(6)2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630501

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) causes a lethal tick-borne zoonotic disease with severe clinical manifestation in humans but does not produce symptomatic disease in wild or domestic animals. The factors contributing to differential outcomes of infection between species are not yet understood. Since CCHFV is known to have tropism to kidney tissue and cattle play an important role as an amplifying host for CCHFV, in this study, we assessed in vitro cell susceptibility to CCHFV infection in immortalized and primary kidney and adrenal gland cell lines of human and bovine origin. Based on our indirect fluorescent focus assay (IFFA), we suggest a cell-to-cell CCHF viral spread process in bovine kidney cells but not in human cells. Over the course of seven days post-infection (dpi), infected bovine kidney cells are found in restricted islet-like areas. In contrast, three dpi infected human kidney or adrenal cells were noted in areas distant from one another yet progressed to up to 100% infection of the monolayer. Pronounced CCHFV replication, measured by quantitative real-time RT-PCR (qRT-PCR) of both intra- and extracellular viral RNA, was documented only in human kidney cells, supporting restrictive infection in cells of bovine origin. To further investigate the differences, lactate dehydrogenase activity and cytopathic effects were measured at different time points in all mentioned cells. In vitro assays indicated that CCHFV infection affects human and bovine kidney cells differently, where human cell lines seem to be markedly permissive. This is the initial reporting of CCHFV susceptibility and replication patterns in bovine cells and the first report to compare human and animal cell permissiveness in vitro. Further investigations will help to understand the impact of different cell types of various origins on the virus-host interaction.


Assuntos
Glândulas Suprarrenais/virologia , Vírus da Febre Hemorrágica da Crimeia-Congo/crescimento & desenvolvimento , Febre Hemorrágica da Crimeia/patologia , Febre Hemorrágica da Crimeia/transmissão , Rim/virologia , Animais , Bovinos , Suscetibilidade a Doenças/virologia , Células HEK293 , Humanos , L-Lactato Desidrogenase/análise , Masculino , Doenças Transmitidas por Carrapatos/patologia , Doenças Transmitidas por Carrapatos/transmissão , Carga Viral , Viremia/sangue , Replicação Viral/fisiologia
5.
Vaccines (Basel) ; 7(3)2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527460

RESUMO

Development of new vaccine platforms against viral diseases is considered urgent. In recent years, mRNA constructs have attracted great interest in this field due to unique advantages over conventional gene transfer platforms. In the present study, we developed a new naked conventional mRNA vaccine expressing the non-optimized small (S) segment of the Ank-2 strain of Crimean-Congo Hemorrhagic Fever virus (CCHFV). We then analyzed its single and booster dose immunogenicity and protection potential in the challenge assay in two mice models, including IFNα/ß/γR-/- and C57BL/6. The results obtained from the immunological assays, namely IL-4 and IFN-gamma ELISPOT, intracellular IFN-gamma staining, in-house sandwich ELISA, and survival data, demonstrated that our construct elicited the production of anti-nucleocapsid (N) specific immune responses in both mice models. A 100% protection rate was only obtained in the booster dose group of IFNα/ß/γR-/- mice, indicating that this platform needs further optimization in future studies. In conclusion, we assessed a novel approach in CCHFV vaccination by introducing a conventional mRNA platform which can be considered in future experiments as an efficient and safe way to battle this disease.

6.
Viruses ; 11(3)2019 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-30857305

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is the causative agent of a tick-borne infection with a significant mortality rate of up to 40% in endemic areas, with evidence of geographical expansion. Due to a lack of effective therapeutics and control measures, the development of a protective CCHFV vaccine remains a crucial public health task. This paper describes, for the first time, a Bovine herpesvirus type 4 (BoHV-4)-based viral vector (BoHV4-∆TK-CCHFV-N) and its immunogenicity in BALB/c and protection potential in IFNα/ß/γR-/- mice models in comparison with two routinely used vaccine platforms, namely, Adenovirus type 5 and a DNA vector (pCDNA3.1 myc/His A), expressing the same antigen. All vaccine constructs successfully elicited significantly elevated cytokine levels and specific antibody responses in immunized BALB/c and IFNα/ß/γR-/- mice. However, despite highly specific antibody responses in both animal models, the antibodies produced were unable to neutralize the virus in vitro. In the challenge experiment, only the BoHV4-∆TK-CCHFV-N and Ad5-N constructs produced 100% protection against lethal doses of the CCHFV Ank-2 strain in IFNα/ß/γR-/- mice. The delivery platforms could not be compared due to similar protection rates in IFNα/ß/γR-/- mice. However, during the challenge experiment in the T cell and passive antibody transfer assay, BoHV4-∆TK-CCHFV-N was dominant, with a protection rate of 75% compared to others. In conclusion, vector-based CCHFV N protein expression constitutes an effective approach for vaccine development and BoHV-4 emerged as a strong alternative to previously used viral vectors.


Assuntos
Vetores Genéticos , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Febre Hemorrágica da Crimeia/prevenção & controle , Imunização Passiva , Proteínas do Nucleocapsídeo/imunologia , Receptores de Interferon/genética , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Bovinos , Modelos Animais de Doenças , Feminino , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/imunologia , Herpesvirus Bovino 4/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas do Nucleocapsídeo/genética , Vacinação , Vacinas Virais/genética
7.
Viruses ; 11(1)2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30658445

RESUMO

Crimean Congo hemorrhagic fever virus (CCHFV) is the causative agent of a globally-spread tick-borne zoonotic infection, with an eminent risk of fatal human disease. The imminent public health threat posed by the disseminated virus activity and lack of an approved therapeutic make CCHFV an urgent target for vaccine development. We described the construction of a DNA vector expressing a nucleocapsid protein (N) of CCHFV (pV-N13), and investigated its potential to stimulate the cytokine and total/specific antibody responses in BALB/c and a challenge experiment in IFNAR-/- mice. Because of a lack of sufficient antibody stimulation towards the N protein, we have selected cluster of differentiation 24 (CD24) protein as a potential adjuvant, which has a proliferative effect on B and T cells. Overall, our N expressing construct, when administered solely or in combination with the pCD24 vector, elicited significant cellular and humoral responses in BALB/c, despite variations in the particular cytokines and total antibodies. However, the stimulated antibodies produced as a result of the N protein expression have shown no neutralizing ability in the virus neutralization assay. Furthermore, the challenge experiments revealed the protection potential of the N expressing construct in an IFNAR -/- mice model. The cytokine analysis in the IFNAR-/- mice showed an elevation in the IL-6 and TNF-alpha levels. In conclusion, we have shown that targeting the S segment of CCHFV can be considered for a practical way to develop a vaccine against this virus, because of its ability to induce an immune response, which leads to protection in the challenge assays in the interferon (IFN)-gamma defective mice models. Moreover, CD24 has a prominent immunologic effect when it co-delivers with a suitable foreign gene expressing vector.


Assuntos
Antígeno CD24/imunologia , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/prevenção & controle , Imunogenicidade da Vacina , Proteínas do Nucleocapsídeo/imunologia , Vacinas de DNA/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígeno CD24/genética , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Febre Hemorrágica da Crimeia/imunologia , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas do Nucleocapsídeo/genética , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...